

Book Review

Blair, J. 2025. Book review of DeJong, M. 2024. *Information literacy for science and engineering students: Concepts and skills*. New York: Bloomsbury Libraries Unlimited. *Journal of Information Literacy*, 19(2), pp. 156–157.

http://dx.doi.org/10.11645/19.2.808

Joanna Blair

Liaison Librarian, Science, Wilfrid Laurier University Library.

Email: joblair@wlu.ca.

DeJong, M. (2024). *Information literacy for science and engineering students:*Concepts and skills. New York: Bloomsbury Libraries Unlimited. pp. 332. ISBN 9781440878763. £48.99. Pbk.

Information literacy for science and engineering students: Concepts and skills provides an excellent overview of information literacy (IL) skills for the sciences aimed at early undergraduate students. This work is divided into eight sections and thoroughly explains different scholarly formats in the sciences, search strategies, search tools, access, and citations. This text speaks thoughtfully to undergraduate students by including many real-life examples throughout the book as well as chapters on essential skills such as selecting an appropriate topic and decoding research assignments. Playful images and speech bubbles throughout the book add to the approachability of the material and may make the book more welcome to undergraduates. This book would be a very useful textbook for an entry-level credit course on scholarly research in the sciences.

An area of strength for this textbook is the wealth of practical advice. In every chapter, readers are encouraged to reach out to library staff if they have any research questions. The chapter on *Decoding Research Assignments* lists dozens of common research assignment instructions with appropriate clarifying questions for students to ask their professors. The book also acknowledges Google as a legitimate tool for research and lists Google Scholar as a database in the chapter *All about Databases*. The inclusion of these commonly used tools undoubtedly will resonate with today's students and help them make important connections between their scholarly research and personal information-seeking practices. Practical advice such as how many databases to search and in what situation it is appropriate to choose the discovery layer over a disciplinary database are also great tips to get students started in the right place and to save them time.

While presenting information about databases, the author adds helpful screenshots of search fields and facets. The bulk of this book is focused on deconstructing the sources and the tools

This Open Access work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, allowing others to share and adapt this content, even commercially, so long as the work is properly cited and applies the same license. Copyright for the article content resides with the authors, and copyright for the publication layout resides with the Chartered Institute of Library and Information Professionals, Information Literacy Group.

Blair. 2025. Book review of DeJong, M. 2024. Information literacy for science and engineering students: Concepts and skills. Journal of Information Literacy, 19(2), pp. 156–157. http://dx.doi.org/10.11645/19.2.808

used for literature searches and it isn't until *Section VI* and page 229 that the author switches to how to construct an effective search using synonyms and Boolean search techniques. Like other chapters of this book, the chapter on searching is detailed and well-explained but when reading it cover to cover, it felt like a long wait to get to this important section.

One area that could have been expanded upon was information about Critical IL in the sciences. *Chapter 14. Scholarly Sources* includes a breakdown of the features of a scholarly source and mentions that the writing tends to be "neutral and unemotional" (DeJong, 2024, p. 122). There is, however, no follow up on this statement about possible bias or conflict of interest in the research. While *Chapter 20. All About Databases* does mention the Matthew effect (DeJong, 2024, p. 202), this topic is not expanded upon and there is no discussion of citation bias. Open access and author's rights is another area that would have been a good follow up chapter to the extensive breakdown of all the different formats but perhaps that is better placed in a textbook aimed at more advanced students or focused on scholarly communication. Open access and the open science movement is covered briefly in *Appendix C* but could have found a place in the main text.

As an IL instructor in the sciences this book was a helpful read and provided an excellent opportunity to reflect on my practice in the classroom with beginner students. In particular, *Part II. Sources: Their Functions, Distinctions, and Where to Find Them*, made me consider how much class time I put into teaching students about different formats and the importance of selecting the right format. This section was 100 pages long and approximately one third of the entire book. Scholarly research in the sciences is very much focused on peer-reviewed literature, and this section provided an excellent reminder that teaching students about other scholarly formats is providing a great service.

Overall, *Information literacy for science and engineering students: Concepts and skills* is a well-structured resource to effectively support early undergraduate learners in developing foundational research competencies. Its approachable tone and emphasis on real-world examples make it particularly suitable for introductory courses and for Science Librarians, it also offers an excellent framework for reflecting on teaching strategies. The clarity and relevance of the text makes this work an overall valuable tool.

References

DeJong, M. (2024). *Information literacy for science and engineering students: Concepts and skills*. New York: Bloomsbury Libraries Unlimited.